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1. INTRODUCTION

Although the steady-state combustion of solid propellants has been under investigation for a number
of years, the detailed chemical and physical processes are still not well understood. Solid propellants
buming at moderate pressures exhibit distinctly different visual characteristics depending upon their
composition. Many propellants burn as a two-stage flame with a luminous portion and a2 nonluminous
"dark zone" that is visually transparent (Kubota 1980). The length of this dark zone increases with
decreasing pressure, and for sufficiently low pressures the luminous flame is not formed. Common gun
propellants (i.., single base [nitrocellulose], double base [nitrocellulose-nitroglycerin], and low-
vulnerability nitramine propellants) exhibit dark zones which arise from the slow conversion of NO to N,.
The delayed ignitions which are found to take place in some gun firings are thought to be related to the

chemistry occurring in the dark zone.

In order to understand the phenomena such as delayed ignition, as well as develop models for
propellant combustion in general, it is necessary t0 measure the combustion processes occurring in the
dark zone. Ideally, the technique which is employed to probe the dark zone should have the following
features: (1) It should be performed under steady-state combustion conditions and in situ; (2) It should
be nonintrusive; (3) The data acquisition time should be fast enough (<0.1 s) to minimize the fluctuations
introduced by the unsteadiness of the propellant flame; (4) It should simultaneously provide temperatures
and absolute concentrations of the chemical species present; (5) The spatial resolution should be fine
enough so that the dark zone may be profiled in detail; (6) The technique should have sufficient sensitivity

to detect species present in small quantities (=1%).

Over the past few years, this laboratory has developed a multichannel optical absorption technique
which incorporates many of the previously listed features. Results for NO and OH have been obtained
for double base and nitramine propellants using a multichannel array detector sensitive in the ultraviolet-
visible (UV-VIS) spectral region (Vanderhoff 1991; Vanderhoff, Teague, and Kotlar 1992b). Recent
advances in multichannel detectors allow us to extend this optical absorption technique into the mid-
infrared (IR) spectral region. Since many of the molecules produced during the combustion of solid
propellants do not have ultraviolet (UV) or visible transitions that can be easily monitored, it is
advantageous~ to probe the IR portion of the spectral region. In this report we demonstrate viability of the
multichannel IR absorption technique as applied to the combustion of solid propellant flames.




Consequently, we report here absorption spectra for XM39, M43, and JA2 and estimate the temperature
and concentrations for HCN, H,0, CH,4, N,0, and CO.

2. EXPERIMENTAL

The absorption experiment and the windowed pressure vessel used in this study have been described
in detail previously (Vanderhoff 1991; Vanderhoff, Teague, and Kotlar 1992b), and so only pertinent
changes to the experiment are described here. The schematic diagram representing the experimental setup
is given in Figure 1. A 0.320-m Czemy-Tumer-type spectrometer (J-Y Systems, model HR-320) has been
employed and equipped with a 75-groove/mm grating blazed at 4 pm. The liquid nitrogen-cooled array
detector (Princeton Instruments) is composed of 1,024 platinum-silicide (PtSi) elements in a linear
configuration. Each element is 15 x 2,500 pm in size and spaced on 25-pm centers. When operated in
first order, the system has a total spectral window of approximately 1.0 ym and a spectral resolution of
0.007 pm using a 125-pm entrance slit width. The spectral calibration was performed using a low pressure
argon (Ar) lamp. The quantum efficiency for PtSi as reported by the manufacturer is quite low (Cizdziel
1991). The detector is sensitive from about 0.9 to 4.5 pm with a maximum quantum efficiency (QE) of
8% at 1.2 pm and decreases to about 2% at 2.5 pm. At wavelengths beyond 3 pm the QE drops to 1%
or less. Although the low QE is somewhat of a drawback, PtSi arrays exhibit extremely good pixel-to-
pixel uniformity, allowing them to perform comparably to other types of IR detectors (Mooney and
Dereniak 1987). When used with the Princeton Instruments ST-120 controller, a scan rate of 10 ps/diode
(i.e., 10.24 ms needed to readout entire diode array) is obtained with a dynamic range of 14 bits.

Light produced from a 250-W quartz tungsten halogen lamp (Osram HLX 64655) was used as the
source and was chosen for its stability as well as for its small filament size (7.0 x 3.5 mm). Although
the quartz lamp bulb cuts off direct radiation from the filament at wavelengths longer than 3.5 pm, the
hot envelope acts as a broad band emitter with output further into the IR. CaF, lenses were used to direct
the light into the chamber, and then collect and focus it onto the entrance slit of the spectrometer. An IR
long-pass filter was used between the sample chamber and the spectrometer to remove any higher order
light, as well as any visible emission emanating from the buming propellant. A fast shutter, with a
minimum opening time of 1.8 ms (Vincent Associates Model LS6), was placed between the light source

and the chamber so that a background spectrum, consisting of the background, the dark charge, and any

emission from the sample, could be subtracted from the spectrum of the transmitted light. Radiation
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Figure 1. Schematic diagram of the experimental setup used in obtaining the infrared absorption spectra
of solid propellant flames.

emitted from the flame is more of a problem in the IR region than it was in the UV-VIS region, and so
the ability to subtract it from the transmitted light is essential for obtaining quantitative transmission data.
The sample is ignited through a ZnSe optical window at the top of the chamber using a 25-W CO, laser
(Synrad Inc.). Although the space surrounding the propellant sample is purged with flowing nitrogen
(Vanderhoff 1991), some combustion products still migrate to this region. These products have
significantly lower temperatures (near room temperature) and their contributions to the absorption spectra
cause significant reductions in the observed temperature of the system. In order to minimize the
recirculation of the combustion products into the light path outside of the combustion region, the overall
path length was reduced to a length approximately 0.4 cm longer than the propellant sample diameter and
was accomplished with the use of extender arms with sapphire windows mounted inside the chamber (see
Figure 1). When possible, propellant samples with a larger diameter were used (1.08 cm vs. 0.65 cm) to
increase the ratio of the sample lengti to total path length, which also helps to minimize the contribution
of any cold products which have migrated outside the combustion region. The overall spatial resolution
of 0.250 cm was set by the inside diameter of the extender arm on the spectrometer side. All spectra

obtained in this study were acquired at an average height 0.125 cm directly above the propellant surface.




A four-channel digital delay generator serves as the master clock in the experiment, synchronizing the
ST-120 controller with the operation of the shutter and the triggering of the propellant feed mechanism.
The general timing diagram is shown in Figure 2. When operated in the external synchronized mode, the
ST-120 controller will read and reset every diode of the array upon the receipt of the falling edge of the
external synchronization pulse. In the present experiment, the frequency of the master clock is set to
95 Hz, so that the array is read and reset every 10.53 ms. This means that a complete spectrum is
collected every 10.53 ms. As mentioned previously, a shutter allows a background spectrum to be
acquired to minimize the contamination of the transmitted light signal by the emission of the propellant
flame. When the shutter is open, a spectrum which measures the transmitted intensity of light (1)) is
collected. When the shutter is closed, a spectrum of the flame emission and background (B,), which can
then be subtracted from I, for background correction during postprocessing of the spectra, is acquired.
The emission spectrum is calculated by subtracting the background collected when the propellant is not
buming (B,) from the background collected while the propellant is buming (B,). In order to compensate
for the finite time required by the shutter to open or close, the frequency of the shutter is set to one-fourth
of the frequency of the master clock. This allows every other spectrum to be acquired while the shutter
is either fully opened or fully closed. The time required to acquire one data pair consisting of one signal
spectrum, I, and one background spectrum, B, is 42 ms when signal averaging is required or 32 ms for
a single shot experiment. The ability to acquire both IR absorption and emission spectra sequentially at
a fast acquisition rate and with low noise provides a significant advantage over other diagnostic techniques

which are currently being used to study solid propellant flames.

A typical experimental run involves the following sequence of events. The propellant sample is
positioned inside the chamber so that the transmitted light (I,) and the background (B_) can be collected
after the chamber is sealed and pressurized. The sample is then moved into position so that the top of
the propellant just blocks the light beam from passing through the chamber. The CO, laser is pulsed for
approximately 0.1 s, thereby igniting the propellant. The master clock is triggered, which, in tum, starts
the propellant feed mechanism, the data acquisition process, and the shutter cycle. The ST-120 controller
will then collect a predetermined number of spectra, which include the spectra when the shutter is either
fully open or closed as well as the spectra where it is only partially opened. The errant spectra where the
shutter is not fully opened (or closed) are then deleted during the postprocessing routine. The total data
accumulation time can be varied depending upon the length of the propellant samples used, the rate at
which they bum, and the amount of averaging needed to obtain a good signal-to-noise (S/N) ratio.
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Figure 2. General timing diagram used for data acquisition in the infrared absorption experiment.

Although under certain conditions the S/N ratio was high enough that no averaging was required
(i.e., single shot spectra), the spectra presented here are the average of 100 spectra and took approximately
4 s to acquire. The final transmission spectrum, T,,, was calculated via

5 [a, - B)/(U,-B,)|

n

The emission spectra are processed by taking the average of difference between the background
spectrum taken during combustion, B, and the background spectrum taken before combustion, B,

)f: (B - B,)]

E =

av

n




As was found in the UV-VIS absorption investigations (although not nearly as large), a broadband
attenuation (absorption) of the transmitted light beam was observed in the IR spectra. The source of the
attenuation is assumed to be scattering from particulates and/or broadband absorption of large molecules
(i.e., soot). A more complete description of the background correction can be found elsewhere
(Vanderhoff, Teague, and Kotlar 1992b). As before, the broadband attenuation will be treated as a
function of the pathlength and only weakly dependent upon wavelength so that the absorption can be

approximated as
I(w) = Iyexp[ -k, 1-b,11=14B(w)exp[k,!],

where /(w) is the transmitted intensity of light, /, is the incident light intensity of the lamp, ,, is the
absorption coefficient for the molecule of interest, / is the pathlength for absorption, and B(w) is the
baseline correction factor. The observed shape of the experimental baseline is used to determine the
appropriate form of B(w). The experimental spectra are then multiplied by the baseline correction factor

to obtain the background corrected spectra used for the estimation of the concentrations and temperatures.
3. RESULTS AND DISCUSSION

The transmission spectra of XM39 propellant taken in the dark zone region approximately 1.25 mm
from the propellant surface during steady-state combustion conditions at 1.01 MPa nitrogen are shown in
Figure 3. Five species (HCN, H,0, CH,, CO, CO,, and N,0) have been identified as exhibiting
absorption over this wavelength region. Absorption bands of water are found in the 4,000-3,200-cm™! and
4,800-5,600-cm™! regions and can be assigned to the fundamental vibrational bands of v; (3,657 cm‘l)
and v5 (3,756 cm™!) and combination band, V, + V3 (5,332 cm™). Other readily identifiable bands include
the fundamental CH asymmetric stretch (3,311 cm'l) of HCN; the fundamental CH stretch (3,020 cm'l)
of CHy; the fundamental of CO,, v; (2,349 cm™); the first overtone, 2v; (2,563 cm™), of N,O; and the
first overtone, 2v, (4,292 cm'l), of CO. Line structure in the region of HCN can be attributed to that of
H,0. Evidence supporting this statement comes from the fact that the spacing of these lines matches that
of the other water lines which are not overlapped with the HCN band. An estimate of the temperature
can be obtained from a band spread analysis of the P and R branches of HCN and the Q and R branches

of CHy,, which results in a temperature of 1,150 K +£50 K (Chan 1974). This value is consistent with
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Figure 3. Transmission spectra of XM39 buming in 1.01 MPa nitrogen taken in the dark zone region at
approximately 0.125 cm above the propellant surface.
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previous dark zone temperature measurements for XM39 burning in 1.01 MPa of nitrogen (Teague, Singh,
and Vanderhoff 1993).

Figure 4 shows an uncorrected emission spectrum of XM39 burning in 1.01 MPa extracted from the
background frames collected during the acquisition of the transmission spectra presented in Figure 3. The
spectrum displays the same spectral features as in the transmittance spectrum. A band spread analysis of
the HCN emission band shows a temperature of 1,150 K in agreement with the transmission spectrum.
As can been seen in Figure 4, a nonnegligible amount of emission from the flame reaches the detector
during data acquisition. If this emission is not taken into account, significant distortions in the
transmittance spectrum can result. An example of this is shown in Figure 5, which compares the
transmission spectrum of XM39 with and without the correction for the emission. For this region, errors
as large as 8% in the transmittance can be obtained if the emission is not corrected. This illustrates
dramatically the advantages of our technique of collecting a background frame for each frame of
transmitted light. Although we have not done so here, it is possible to extract a temperature for the
system through the comparison of the calculated normalized radiance (obtained from the ratio of the
transmission and corrected emission spectra) with that of a theoretical blackbody function (Solomon et al.
1986). This could serve as another check for the estimation of the temperature. Under the current
experimental conditions, the background due to the soot was not a major problem. However, at lower
pressures there is a substantial increase in amount of soot produced for both the nitramine and double base
propellants. When a transmission and emission spectrum can be obtained with a substantial amount of

soot particles, the temperature and concentration of the soot can be estimated as well.

The transmission spectra of M43 propellant taken in the dark zone region during steady-state
combustion conditions where the surrounding environment is nitrogen gas maintained at a pressure of
1.01 MPa are shown in Figure 6. M43 is very similar to XM39 in composition, and the transmission

spectra are also similar, as expected.

The transmission spectra of the double-base JA2 propellant also taken in the dark zone during steady-
state combustion conditions at 1.01 MPa nitrogen are shown in Figure 7. As with the nitramine
propellants, the water, CO, and CH, bands are readily identified. At these low pressures, JA2 bums at

a much faster rate than the nitramine propellants, hence the S/N ratio is much worse in the JA2 spectra

especially in the lower energy region. The most notable difference between the spectra of JA2 and the
nitramines is the absence of the HCN band at 3,300 cm™!. The lack of HCN in the spectrum for JA2 is
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background frames collected during the acquisition of the transmission spectra in Figure 3.
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not surprising since there are no C-N bonds in its major components, nitroglycerine, nitrocellulose, and

DEGDN. N,O bands were also absent from the JA2 spectra.

Although not shown here, the nitramine propellant HMX?2 and the double-base propellant M9 have
also been surveyed, and results show that the spectra for these propellants are qualitatively similar to the
spectra shown here for XM39 and JA2, respectively.

The HITRAN database with associated PC programs (Rothman et al. 1992) was used to synthetically
produce a spectrum for M43 over the spectral region of 4,350-3,030 cm™! similar to that found in Figure §
and is presented in Figure 8. The input parameters used are the total pressure (1.01 MPa), the estimated
temperature (1,150 K), the path length (0.65 cm), and the spectral resolution (0.007 pm). An instrument
slit response function was generated from an Ar emission line in the spectral region of interest using a low
pressure Ar lamp and convoluted over the spectrum generated by HITRAN, producing the synthetic
spectrum shown in Figure 8b, along with the spectrum from the experiment for comparison (Figure 8a).
The concentrations, in mole-percent,* of HCN, H,0, and CH, were adjusted to best simulate the
experimental spectrum over the same region. The concentrations of CO and N,O were estimated in a
similar manner, and all of the results are identical to those obtained for XM39. An estimation could not
be made for CO, due to the saturation of this band. The uncertainty of these estimates for the
concentrations vary with species but are, in general, expected to be reliable to 30%. Because an
estimation of the temperature for JA2 could not be calculated using the band spread method for HCN, the

temperature was estimated from previous UV-VIS absorption experimental measurements of NOS,

It has been suggested that there should be a temperature gradient over the absorption path length
within the chamber. This temperature gradient is probably due to (1) the cooling of the propellant about
the edges by the flowing shroud gas, and (2) the migration of cold combustion gases back into the
absorption path volume between the propellant and the windows. Evidence for the cooling of the
propellant by the shroud gas is demonstrated by the visual observation of the cupping of the surface of
the propellant as it burns. Because the multichannel absorption technique is a line-of-sight measurement,
the light is integrated along a line passing through the center of the propellant, producing a spectrum that

is a composite which reflects the temperature and species variations along this line. In order to better

* The experiment is carried out under constant total pressure conditions; thus, mole-percent represents the relative amount of each
species. Total pressure and mole-percent of species present give absolute concentration.
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18%; H,0: 5%, CH,: 1.5%; plus H,O: 2.5% at 400 K. See text for details.)
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understand this aspect of the measurement, we have used the HITRAN program to simulate spectra with
two temperatures to see if a better representation of the experimental spectrum can be produced. One of
these simulations is shown in Figure 8c. The spectrum is a composite of a spectrum produced with a
temperature of 1,150 K and mole fractions of HCN: 18%; CH,: 1.5%; and H,0O: 5% added to another
spectrum produced with a temperature of 400 K and a mole fraction for H,O of 2.5%. As can be seen
in the figure, the R branch of the v, band of H,O (3,800-4,100 cm'l) is simulated much better with a two-
temperature model for water than with a one-temperature model. However, a two-temperature model for
HCN and CH, with the same proportional concentrations for the two temperatures as found for water
(i.e., 2 [1,150 K]:1 [400 K]) proves to be much worse in simulating the experimental spectrum. We are
currently developing a multitemperature nonlinear least-squares fitting routine along with the incorporation
of additional hot bands and higher J values not yet included in the HITRAN database. These

modifications should improve the certainty for the estimates for the temperatures and concentrations

reported here.
4. COMPARISONS

To place the present data in context with other published results, Tables 1 and 2 have been developed.
These two tables contain relevant experimental parameters, experimental and estimated dark zone data and
calculated thermochemical equilibrium temperatures. Unfortunately, there is not an abundance of
experimental data from which to select, thus the comparisons may not be strictly valid. Before making
any detailed comparisons, general differences in the data sets are given. Table 1 contains information on
nitramine composite propellants; five entries are RDX-based propellants, and two are HMX-based.
Table 2 contains information for homogeneous double-base propellants. The data obtained for pressures
of 9 atm and above are taken during steady-state combustion conditions whereas the 1-atm pressure data
are taken with laser assisted combustion conditions. The data sets are obtained from a variety of analytical
techniques: mass spectrometry with micro probe sampling, grab sampling with post analysis, and
absorption spectroscopy under steady-state combustion conditions. Each of these techniques has strong
and weak points. Although mass spectrometric sampling provides data on most species; the probe is
intrusive, multiple species appear at the same charge-to-mass ratio, and the ionization process can fragment
the species, thus complicating the analysis. Grab sampling with post analysis is intrusive and without
special heating measures can miss condensable constituents such as H,0 and CH,O. Absorption

spectroscopy is a line-of-sight technique and suffers from overlapping spectra, especially in the IR regions.
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Table 1. Comparison of Experimentally Determined Dark Zone Temperatures and Species
Concentrations for Nitramine-Based Solid Propellants (Adiabatic Equilibrium
Flame Temperatures Are Shown in the Last Two Rows; Values in Parentheses
Are Estimates [Guesses])

Parameters | XM39% | XM39® | xM39° | M43° | M43® | HMX2? | HMX-PE®
P(atm) 10 21.7 1 1 9.8 19 20
Ht(cm) 0.15 0.05 0.5 0.5 0.05 0.05 | dark zone
TpAK) 1150 947 1170 | 1240 | 1234 | 1300 1300

NO 0.16 0.08 0.22 023 | 0.06 0.10 0.17
co <0.15(.15) | 0.08 0.08 0.09 | 0.6 — 0.15
H, (.05) (.05) 0015 | 002 | (05) | — 0.05
N, (315) (44)f 0.08 0.08 | (30 — 0.08(.13)
H,0 0.05 0.07 0.21 021 | 0.4 — 0.208
Co, (.05) 0.04 0.05 0.04 | 0.05 — 0.06
NO, ) (0) 0.0 0.0 ) — )
N,O <0.07(.03) | (.03) 0.03 0.04 | (03) — (.03)
HCN 0.18 (20) 0.22 022 | (20) — (:20)
CH, 0.015 (01) 0.01 001 | (01 — (01
CH,0 ©) (0) 0.06 0.06 [0) — )
TrsK) 2161 2163 2151 | 2416 | 2449 | 2080 1928
TrpK) 2518 1755 2723 | 2808 | 1864 — 2711

3 Present data; also Teague, Singh, and Vanderhoff (1993).

® Data of Mallory and Thynell (1994).

¢ Data of Kuo (1994) (ARO/URI Program Review) and Chin-Jen Tang and Litzinger (1994).

9 Data of Vanderhoff, Teague, and Kotiar (1992a).
€ Data of Kubota (1982).

f Nitrogen added to bring the total mole fraction to 1.0; otherwise the thermochemical equilibrium program

will renormalize.
£ A 20% H,0 concentration is assumed.
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Table 2. Comparison of Experimentally Determined Dark Zone Temperatures and
Species Concentrations (Mole Fraction) for Double-Base Solid Propellants
(Adiabatic Equilibrium Flame Temperatures Given in the Last Two Rows)

Parameters JA2? jA2P M9P M9 | DB1¢ DB2°
P (atm) 10, 16 1 1 17 14.6 9
Ht (cm) 0.15 0.2 0.2 0.1 0.6 0.2
Tpz(K) 1450 1890 1900 1500 1575 1500

NO 0.24 0.31 033 0.31 0.24 0.21
Co 0.26 <036(32) | <033(32) — 0.30 0.38
H, (.08) 0.04 0.06 — 0.08 0.08
N, (33)f (02) (02) — 0.065 0.02
H,0 0.08 0.14 0.16 — 0.208 0.208
o, ~(.1) 0.10 0.10 — 0.10 0.09
NO, © 0.015 <0.005 — ©) ©)
CH, 0.01 (01) (01) — 0.07 0.026
CH, © © © — 0.08 0.008
CH,0 ©) 0.045 0.015 — ) ©)
Tyes(K) 2793 at 16 am 2678 2800 3023 3075 2813
Tre02(K) 2947 at 16 am 2990 2978 — 3057 2859

2 Present data; also Vanderhoff et al. (1992a).

b Data of Liiva, Fetherolf, and Litzinger (1991).

€ Data of Vanderhoff, Teague, and Kotlar (1992a).

4 Data of Heller and Gordon (1955).

€ Data of Lengelle et al. (1984).

f Nitrogen added to bring the total mole fraction to 1.0; otherwise the thermochemical equilibrium program
will renormalize.

€ A 20% H,0 concentration is assumed.

Having mentioned some of the weaknesses in the data sets, a more detailed look is now presented.
The homogeneous double-base propellant data of Table 2 are in better shape than the data of Table 1.
That is, there is better agreement among data sets and energy conservation conditions. The last two rows
(Tas[K1, Ty -pz[K]) are a measure of the energy content. The NASA-Lewis thermochemical equilibrium
code (Svehla and McBride 1973) is used to calculate the adiabatic flame temperatures from two starting
points: (1) the solid propellant ingredients (see Appendix) and is designated Ty ((K) and (2) the
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experimental dark zone species concentration and temperature measurements designated Tyg pAK). Where
the measurements are incomplete, estimates (guesses) are made for these concentrations and enclosed in
parentheses. Ideally, Ty (K) and Ty; pz(K) should be the same. Differences reveal uncertainties in the
experimental dark zone data or equilibrium assumptions. The data in columns L and M of Table 2
demonstrate excellent energy matching. Columns H, I, and J show substantial differences in these
calculated equilibrium temperatures, but the experimentally measured dark zone temperatures in columns
I and J are well above the results in the other columns. We feel that the dark zone temperature values
should be several hundred degrees lower (consistent with columns H, K, L, and M), which would then
put the equilibrium temperatures in better agreement. Column H represents present and previous data
obtained in this laboratory. These data result in about a 150° difference in the equilibrium temperatures.
Not all of the concentrations are accounted for in these measurements, as can be seen by the need to add
nitrogen to make a total mole fraction of one. There is disagreement in the H,O concentration
measurements between columns H and I; also with respect to the nitramine propellants of Table 1. No
explanation for the variation in H,O concentration is known. There could be experimental difficulties in
proper measurements for condensable species. Pressure effects might be present, but thermochemical
equilibrium calculations do not support this possibility. Formaldehyde shows up in the low pressure data

but is absent at higher pressure, which is consistent with expectations.

Nitramine propellant data are shown in Table 1, and here most of the columns give Ty p(K)
calculated values much in excess of those calculated, starting with the solid propellant ingredients. In
general, these propellants combust to give fuel-rich mixtures. Hence, energy (temperature) values are
particularly sensitive to oxidizer content. For double-base propellants, there is only one major dark zone
species that is not an equilibrium species—namely NO. In other words, experimental measurements show
that NO is a major dark zone species whereas thermochemical equilibrium codes predict only trace
amounts of NO. Nitramine propellants have two major nonequilibrium species: NO and HCN, which
adds to the difficulty in obtaining appropriate experimental results.

Over the last few years, significant additions to the total amount of solid propellant combustion
diagnostic data have occurred. Nonetheless, consistent measurements are still needed for the major species
of nitramine propellants. It appears that there is reasonable agreement only with respect to HCN and CO,,.
In order to bring down Ty pz(K), a reduction in oxidizer content or lower dark zone temperatures or both
are required. The temperature measurements are reasonably consistent so a lowering of the oxidizer

content appears to be the more probable solution. Columns B and E have the lowest measured NO
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concentrations, and here Ty p(K) is substantially less than Ty s(K). Column A contains our present
measurements for XM39. Within experimental error M43 propellants give identical results. At present
only maximum estimates are given for CO and N,O concentrations. Improvements in the experiment as

well as data analysis have progressed to the point that we foresee reporting actual values in the near

future.

5. SUMMARY

A multichanne] IR absorption technique has been developed and applied to study of solid propellant
flames. Spectra have been reported for the nitramine propellants XM39 and M43 and the double-base
propellant JA2. A temperature and concentrations for HCN, H,0, CH,, N,O and CO have been estimated
using the HITRAN database. When compared to the literature data obtained with laser-assisted heating,
the results were found to be qualitatively similar. Future work will involve a continued survey of
additional propellants, improvements in the data analysis through the use of a nonlinear least squares

technique, and an increase in the spatial resolution of the system in order to begin profiling the dark zone.
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APPENDIX:

INGREDIENTS, HEATS OF FORMATION, AND HEATS OF EXPLOSION
FOR THE VARIOUS SOLID PROPELLANTS DISCUSSED
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Table A-1. Ingredients, Heats of Formation, and Heats of Explosion for the Various Solid Propellants

Discussed (The Nitration Level N Is Also Given for Nitrocellulose)
Propellant Type Ingredients Weight-Percent HOF HOE
(cal/mol) (cal/g)
RDX? 76 14,690
Cellulose Acetate Butyrate 12 -255,800
XM39 Nitrocellulose (12.6% N) 4 -169,160 830
Acetyl Triethyl Citrate 7.6 —415,000
Ethyl Centralite 0.4 -25,100
RDX 76 14,690
Va3 Cellulose Acetate Butyrate 12 -255,800
Nitrocellulose (12.6% N) 4 -169,160
Energetic nitro plasticizer 8 —
HMX® 80 17,920
HMX2 780
PU Binder 20 -118,300
HMX 80 17,920
HMX-PE —
PE Binder 20 ~72,000
Nitrocellulose (13.04% N) 58.2 -165,580
Nitroglycerin 15.8 -88,600
JA-2 — 1,120
DEGDN° 25.2 -103,500
AKARDIT II 0.05 -25,500
Nitrocellulose (13.29% N) 57.6 -163,460
Nitroglycerin 40.02 -88,600
M9 1,308
Ethyl Centralite 0.73 -25,100
Potassium Nitrate 1.63 -117,760
Nitrocellulose (12.6% N) 55 -169,600
DB1 ) 1,320
Nitroglycerin 45 —-88,600
Nitrocellulose (11.6% N) 52 -176,690
DB2 Nitroglycerin 43 -88,600 1,100
Ethyl Centralite 3 -25,100

2 RDX: cyclotrimethylene-trinitramine.
HMX: cyclotetramethylene-tetranitramine.
© DEGDN: diethyleneglycoldinitrate.
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This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number _ARL-TR-900 Date of Report _December 1995
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' 3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report
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5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
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organization, technical content, format, etc.)
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